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Overview

I Combinatorics

I The Axiom of Determinacy

I Definable Combinatorics
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The Simplest Combinatorics: Intuitively

I The Pigeonhole Principle: “if you have more people than you
have beverage types, then at least two people have to have
the same beverage.”

I Ramsey’s theorem: “if you have a lot more people than you
have beverage types, then there is a large group of people so
that every pair pulled from this group has the same
combination of beverages”
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The Simplest Combinatorics: Formally

I The Pigeonhole Principle: If m < n ∈ N, X is a set of size n,
and f : X → m is a partition of X into m-pieces, then for
some i < m, f −1(i) is bigger than 1. (Dirichlet 1834,
“Schubfachprinzip”)

I Ramsey’s theorem: Fix n,m, k, l ∈ N. Then there is an N ∈ N
so that whenever X is a set of size n, and f : [X ]k → m is a
partition of the increasing k-tuples of X into m-pieces, then
there is an A ⊆ X so that A has size l and f is constant on
[A]k . (Ramsey 1930, [18])
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The Coloring Picture

Frequently, partition functions that show up in applications of the
Pigeonhole are referred to as colorings.

Jared Holshouser University of North Texas
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Two Generalizations

There are two ways one might try to generalize these properties.

I Direction 1: add structure to the set being colored and
demand that the coloring respects this structure. For example,
look at finite graphs and demand that adjacent nodes receive
different colors.

I Direction 2: Allow the parameters in the coloring set up to be
infinite.

Jared Holshouser University of North Texas
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Calibrating Infinite Sizes
To state coloring theorems explicitly we will need to understand the
sizes of sets at a finer level than finite, countable, and uncountable.
The cardinals are an attempt to list out all possible sizes of all
sets. They have some very nice properties:

1. Any two cardinals κ and λ are comparable with injections:
either κ embeds into λ (κ ≤ λ) or vice versa.

2. Like N, cardinals are well-ordered. Recursive constructions
and inductive proofs can be carried out on cardinals.

3. All the finite numbers are represented as cardinals; they form
an initial segment of the cardinals.

4. ℵ0 is the first infinite cardinal, it is essentially N. The first
uncountable cardinal is ℵ1.

5. If a set X can be well-ordered, then it is in bijection with a
unique cardinal κ. We say X has size κ. AC implies every set
is in bijection with a unique cardinal.

Jared Holshouser University of North Texas
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Calibrating Infinite Sizes

Unlike finite numbers, infinite cardinals can be well-ordered in a
variety of ways. These are naturally ordered by order-preserving
embeddings and constitute the ordinal numbers. The cardinals and
ordinals together form the set theorists number line.

0 1 2 3 · · · ℵ0 ℵ1 · · · κ · · ·
0 1 2 3 · · · ωω

+
1

ω
+
2

· · · ω1ω1
+
1

ω1
+
2

· · · · · ·

ω is the minimum well-order on ℵ0. It is also essentially N. There
are ℵ1-many well-orders on ℵ0. ω1 is the minimum well-order ℵ1,
and there are ℵ2-many well-orders on ℵ1. This pattern continues.
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Infinite Combinatorics

For all cardinals we obtain a version of the pigeonhole principle.
Suppose κ and λ are cardinals and λ < κ. Suppose X has size κ
and f : X → λ is a coloring of X with λ-many colors. Then there
is an α ∈ λ so that f −1(α) is bigger than 1.

The infinite Ramsey theorem is an extension of Ramsey’s theorem
to all of N. If m, k < ℵ0 and f : [ℵ0]k → m, then there is an
infinite A ⊆ ℵ0 so that f is constant on [A]k .
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Harder Infinite Combinatorics

For infinite cardinals κ, let [κ]<ω be the collection of all increasing
finite tuples from κ. Can we get a simultaneous version of
Ramsey’s theorem for ℵ0: i.e. if f : [ℵ0]<ω → 2, is there an infinite
A ⊆ ℵ0 so that f is constant on [A]<ω?

No! Consider f (~s) = parity of lh(~s). Let’s weaken the question. If
f : [ℵ0]<ω → 2, is there an infinite A ⊆ ℵ0 so that for each k, f is
constant on [A]k?

No! Consider f (~s) = 1 iff min(s) < lh(~s). Let’s weaken the
question again. Is there a cardinal κ so that whenever
f : [κ]<ω → 2, there is an A ⊆ κ with size κ so that for each k , f
is constant on [A]k?

Jared Holshouser University of North Texas
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Finite Coloring Properties

Yes, but such a cardinal is not easy to find. In fact, such a cardinal
is not describable with the techniques of classical mathematics.
This extended Ramsey property is just one possible finite coloring
property.

Let κ be a cardinal.

I κ is Ramsey if whenever f : [κ]<ω → 2, there is an A ⊆ κ
with size κ so that for each k, f is constant on [A]k

(Erd os-Hajnal 1962, [18]).

I κ is Rowbottom if whenever λ < κ and f : [κ]<ω → λ, there
is an A ⊆ κ with size κ so that when f is restricted to [A]<ω,
it’s range is countable (Rowbottom 1964, [19]).

I κ is Jónsson if whenever f : [κ]<ω → κ, there is an A ⊆ κ
with size κ so that when f is restricted to [A]<ω, it’s range is
not all of κ (Jónsson 1972, [10]).
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Infinite Coloring Properties

Why only allow the size of the set and the number of colors to be
infinite? Suppose f : [ℵ0]ω → 2. Must there be an infinite A ⊆ ℵ0

so that f is constant on [A]ω?

No! Using the axiom of choice, we can enumerate the infinite
subsets of ℵ0 and then create a function which diagonalizes
against them. In fact, this proof technique works for a general
infinite cardinal.

However, there is a natural topology to put on the [ℵ0]ω, and if f
corresponds to a Borel set in this topology, then the answer is yes
(Galvin-Prikry 1973, [5]). The coloring constructed from the axiom
of choice is pathological in much the same way as the Vitali set.
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Another Fork in the Road

I Subdirection 1: Embrace the axiom of choice and explore the
finite coloring properties under the axiom of choice.

I Subdirection 2: Consider only definable colorings and see
what happens when obvious pathologies are avoided.

Jared Holshouser University of North Texas
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Extending the Borel Sets

I The Borel sets are those subsets of R generated by the open
sets under countable set operations. But to capture the
notion of definability, we have to look at more than just that.

I Solovay, in 1970 studied an object called L(R) [22]. This is
the smallest structure containing R and closed under all
definable operations.

I Unlike the Borel sets, L(R) captures more than just subsets of
R, it also captures collections of subsets of R, families of
collections of subsets of R, etc... .

I The properties of Borel sets lift to sets of reals in L(R): they
are Lebesgue measurable, have the Baire property, are either
countable or in bijection with R, and so on. In fact, a stronger
principle which implies all of these is true for L(R).

Jared Holshouser University of North Texas
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Games

Let A ⊆ R. The game GA is played as follows:

I there are two players, I and II,

I they alternate playing natural numbers,

I this forms an infinite string 〈n0, n1, · · · 〉, which in turn defines
a real x ∈ R,

I I wins this play of the game if x ∈ A and II wins if x /∈ A.

I n0 n2 · · ·
II n1 n3 · · ·
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Strategies

A strategy is a function which decides what moves a player should
make.

I For player I, this is a function

σ : {〈n0, n1, · · · , n2k−1, n2k〉 : k ∈ N and n0, · · · , n2k ∈ N} → N

If y = 〈n1, n3, · · · 〉 is II’s play in the game, then

σ ∗ y = 〈σ(∅), n1, σ(〈σ(∅), n1〉), · · · 〉

I The situation for player II is similar.

Jared Holshouser University of North Texas
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Winning Strategies

A strategy σ for player I is winning for GA if σ ∗ y ∈ A for every y .
A strategy for player II is winning for GA if τ ∗ y /∈ A for every A.
We say A is determined if there is a winning strategy for GA.

Note:

I If A decides who wins the game after only finitely many
moves, then A is determined.

I Only one player can have a winning strategy.

I If A is Borel set, then A is determined (Gale-Stewart 1953,
[4]) (D. Martin 1975, [16]).

I Under the axiom of choice, there is a set A which is not
determined.
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The Axiom of Determinacy

The axiom of determinacy (AD) is the assertion that every A ⊆ R
is determined.

I AD implies that all sets of reals are Lebesgue measurable,
have the Baire property, are either countable or in bijection
with R, and so on.

I AD contradicts the axiom of choice. In fact, AD implies that
there is no well-order on R.

I AD is true for L(R) (Woodin, 1980s). Builds on work of
Martin and Steel. For a reference see [13]
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Size Without the Axiom of Choice
Without the axiom of choice, the best way to measure size is
through injections. The cardinals are no longer a comprehensive
list of all possible sizes. Note that 2ω is in bijection with R.
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Finite Coloring Properties Under AD

In settings without the axiom of choice, Θ is used to denote the
least cardinal which R does not surject onto. Under AD, Θ is quite
large. In L(R),

I if ω < κ < Θ is regular, then κ is Ramsey (Steel 1995, [23]),

I if ω < κ < Θ is regular or is the countable union of sets of
smaller cardinality, then κ is Rowbottom, and

I if ω < κ < Θ, then κ is Jónsson
(Jackson-Ketchersid-Schlutzenberg-Woodin 2014, [9]).

In fact, this is an exact characterization.
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Infinite Coloring Properties Under AD

Building on the work of Mathias from 1976 [17], Shelah and
Woodin showed the following in 2002 [20].

Theorem
Suppose f : [ℵ0]ω → 2 is in L(R). Then there is an A ⊆ ℵ0 so that
f is constant on [A]ω.

Definition
Say κ has the weak partition property if whenever f : [κ]<κ → 2,
there is an A ⊆ κ so that |A| = κ and f is constant on A.
κ has the strong partition property if whenever f : [κ]κ → 2,
there is an A ⊆ κ so that |A| = κ and f is constant on A.
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The Weak and Strong Partition Properties

Theorem (Martin, 1968 [15])

In L(R), ℵ1 has the strong partition property.

Theorem (Kechris-Kleinberg-Moschovakis-Woodin 1981 [11],
Kechris-Woodin 1982 [12])

AD implies that there are unboundedly many κ < Θ with the
strong and weak partition properties. In fact the existence of
unboundedly many κ < Θ with the weak partition property is
equivalent to AD.

With his work on descriptions, Steve Jackson has worked to
characterize which cardinals have the weak and strong partition
properties in L(R).
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Combinatorics on Other Sets

R is the start point for sets which cannot be well-ordered. There
are two directions to go from there:

I Stay with linear orders and look at 2ω1 , 2ω2 , etc...

I Go into the cloud and look at quotients of R.

The second direction has the most theoretical support, in the form
of descriptive set theory.
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Invariant Descriptive Set Theory

The cloud past R is populated with quotients of R. If E and F are
Borel equivalence relations on R, we say E ≤B F iff there is a map
f : R→ R so that xEy ⇐⇒ f (x)Ff (y). This corresponds to R/E
embedding into R/F in a definable way.

Theorem (Silver 1980, [21])

Suppose that E is a Borel equivalence relation on R. Then either
R/E is countable or idR ≤B E.

Definition
Define E0 by xE0y iff |x − y | ∈ Q. Note that E0 6≤B idR.

Theorem (Harrington-Kechris-Louveau 1990, [6])

Suppose E is a Borel equivalence relation on R and idR ≤B E.
Then either E ≤B idR or E0 ≤B E.
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Dichotomies Under AD

These dichotomies extend under AD. So, in L(R), if ℵ1 does not
embed into R/E , then precisely one of the following is true:

I R/E is countable,

I R/E is in bijection with R, or

I R/E0 embeds into R/E .

Shelah and Harrington proved the first part of this trichotomy for
some non-Borel sets in 1980 [7]. Woodin extended this work to all
of L(R) in the 90s, and Hjorth proved the last two parts of this
trichotomy in 1995 [8]. Caicedo and Ketchersid have recent work
extending this to all sets in L(R) [2].
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Coloring Properties for Other Sets

When X is just some set, we define [X ]<ω to be the finite subsets
of X .

I X is Ramsey if whenever f : [X ]<ω → 2, there is an A ⊆ X in
bijection with X so that for each k , f is constant on [A]k .

I X is Jónsson if whenever f : [X ]<ω → X , there is an A ⊆ κ
in bijection with X so that when f is restricted to [A]<ω, it’s
range is not all of X .

Theorem (H.-Jackson)

In L(R), R is Jónsson and R/E0 is Ramsey.

Work from Blass in 1981 [1], Voigt in 1985 [24], and Lefmann in
1987 [14] show that while R is not Ramsey, there are canonization
theorems for R.
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Coloring Properties for Pairs of Sets

Definition
Let X and Y be sets. Then

I (X ,Y ) is Ramsey if whenever f : [X ]<ω → Y , there is an
A ⊆ X in bijection with X so that for each k, f is constant on
[A]k , and

I (X ,Y ) is Jónsson if whenever f : [X ]<ω → Y , there is an
A ⊆ X in bijection with X so that when f is restricted to
[A]<ω, it’s range is not all of Y .
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Results for Pairs

Theorem (Jackson-Ketchersid-Schlutzenberg-Woodin, 2014)

Suppose ω < λ, κ < Θ are cardinals. Then in L(R), (κ, λ) is
Jónsson.

Theorem (H.-Jackson)

Let X be the set of cardinals between ω and Θ, along with R and
R/E0. Let X be the closure of X under ∪ and ×. Then (A,B) is
Jónsson in L(R) for all A,B ∈ X .

Theorem (H.-Jackson)

(R/E0,R) is Ramsey in L(R) and (R/E0, κ) is Ramsey in L(R) for all
cardinals κ.
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Thanks For Listening!

Jared Holshouser University of North Texas
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In A. Kechris, B. Löwe, and J. Steel, editors, The Cabal
Seminar, Volume 1, pages 333–354. Cambridge University
Press, 2008.

Jared Holshouser University of North Texas

Combinatorics under Determinacy



Combinatorics The Axiom of Determinacy Definable Combinatorics

References V

[12] A. Kechris and W. Woodin.
The equivalence of partition properties and determinacy.
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